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Perturbation theory can work for thermodynamic quantities! Let’s use it!

e HTLpt from Andersen, Su, Strickland. Dimensional Reduction/EQCD — the Finish Group
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Want to compute transport with similar precision at high T



Motivation

e This calculation uses LO order photon production rates
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(Turbide, Rapp, Gale)

We want to compute
this rate at NLO

Thermal rate is
dominant for a
certain momentum
range

Direct photons are measured, but this is not my real motivation ...



My real motivations:

1. Energy loss.

2. The shear viscosity.



My real motivation. Energy loss at sub-asymptotic energies is important:

1. Kinematic constraints limit the agreement between energy loss formalisms

— See the report of the Jet Collaboration: arXiv:1106.1106

2. Finite energy leads to large angle emission outside of radiative loss formalism
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As the bremmed energy gets lower and lower, the angle Af gets larger and larger,

limiting the agreement



My real motivations:

v' Energy loss

2. The shear viscosity



My real motivation. Shear viscosity and the kinetics of weakly coupled QGP

1. Hard Collisions: 2 < 2

2. Diffusion: collisions with soft random classical field

soft fields have p ~ g'I" and large occupation numbers ng ~ % ~ %
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3. Brem: 1 < 2

e random walk induces collinear bremsstrhalung

NLO involves corrections to these processes and the relation between them

But shear viscosity is too hard . . .



My real motivations:

v' Energy loss
v" The shear viscosity

Photon production at NLO is a good warm-up calculation.

Lets do it!
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HOt QGP 2]«(277)3% = Photon emission rate per phase-space
Y2

The photon emission rate at weak coupling:

e The rate is function of the coupling coupling constant and k/T:
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O(g?) is closely related to open issues in energy loss:

e At NLO must include drag, collisions, bremsstrhalung, and kinematic limits



Three rates for photon production at Leading Order

1. Hard Collisions —a 2 <> 2 processes
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2. Collinear Bremsstrhalung —a 1 <+ 2 processes
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3. Quark Conversions — 1 <+ 1 processes (analogous to drag)
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O(g) Corrections to Hard Collisions, Brem, Conversions:
1. No corrections to Hard Collisions:

2. Corrections to Brem:

(a) Small angle brem. Corrections to AMY coll. kernel. (Caron-Huot)

M)QNQ

% %Q =(q",q",q.) = (gT, ¢°T, gT)

2. 2
1T'qg mi
q1 (q7 +mp)

(b) Larger angle brem. Include collisions with energy exchange, ¢— ~ g1
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Crolgl] = > A complicated but analytic formula




3. Corrections to Conversions:

K K

or

AVAV,

e Doable because of HTL sum rules (light cone causality) Simon Caron-Huot

e Gives a numerically small and momentum indep. contribution to the NLO rate

Full results depend on all these corrections.

These rates smoothly match onto each other as the kinematics change.



NLO Results: FLO-|—NLO ~ LO + 93 10g<1/g) + 93
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NLO Results: FLO-|—NLO ~ LO + 93 10g<1/g) + 93
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The different contributions at NLO (conversions are not numerically important)
large-6 radiation suppressed at NLO

small-0 radiation enhanced at NLO
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The calculation



Semi-collinear radiation — a new kinematic window

2 — 2 processes

semi-collinear radiation

collinear radiation

The semi-collinear regime interpolates between brem and collisions



Matching collisions to brem

e When the gluon is hard the 2 <+ 2 collision:

is physically distinct from the wide angle brem

&




Matching collisions to brem

e When the gluon becomes soft (a plasmon), the 2 <+ 2 collision:
m > § ~
)F

is not physically distinct from the wide angle brem

@MM)QN@

Need both processes

— For harder gluons, ¢g— — I, this becomes a normal 2 — 2 process.

— For softer gluons, ¢g= — gQT, this smoothly matches onto AMY.



Matching collisions to brem

e When the gluon becomes soft (a plasmon), the 2 <+ 2 collision:

wa
E~T %): N 0~ Y5 n /g

N

is not physically distinct from the wide angle brem
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Need both processes

— For harder gluons, ¢g— — I, this becomes a normal 2 — 2 process.

— For softer gluons, ¢~ — gQT, this smoothly matches onto AMY.



Brem and collisions at wider angles (but still small!)

e Photon emission rate
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All of the dynamics of the scattering center in a single matrix element (F; F; 4 (Q))



Finite energy transfer sum-rule
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Wider angle emissions can be included by a “simple” modified collision kernel



Matching between brem and conversions

2 — 2 Processes
semi-collinear radiation

collinear radiation

What happens when the
final quark is sott?

When the quark becomes soft need to worry about conversions.



Matching between brem and conversions

e When the final quark line is hard, the brem process :

is physically distinct from the conversion process:

=

K



Matching between brem and conversions

e When the final quark line becomes soft, the brem process :
P K~P

< zP

is not physically distinct from the conversion process
P K~P

2P < pu

Separately both processes depend on the separation scale, it ~ g1, but . . .
the  dep. cancels when both rates are included

e The LO small-6 and large-6 brem rates depend linearly and logarithmically on an

infrared separation scale, (.

The NLO conversion rate will depend on a UV cutoff 1+ and cancels this dependence



Brem rates with a soft quark

P K~P

n<zP

e Small angle brem
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Computing the conversion rate with sum-rules (LO): (see also Bodeker)
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Computing the conversion rate at NLO with sum-rules:
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The UV divergences of conversion rate match with the IR divergences of large and

small angle brem giving a finite answer



Summary of the matching calculations at NLO
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The 1 dependence cancels between the different contributions



Conclusion

e The result again
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e All of the soft sector buried into a few coefficients, 5777%0 and Genvyrt

— Can we compute these non-perturbatively ?

Many things can be computed next (e.g. shear viscosity and e-loss)



